3.612 \(\int \frac{(a+a \sin (e+f x))^m}{(c+d \sin (e+f x))^2} \, dx\)

Optimal. Leaf size=100 \[ \frac{\sqrt{2} \cos (e+f x) (a \sin (e+f x)+a)^m F_1\left (m+\frac{1}{2};\frac{1}{2},2;m+\frac{3}{2};\frac{1}{2} (\sin (e+f x)+1),-\frac{d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) (c-d)^2 \sqrt{1-\sin (e+f x)}} \]

[Out]

(Sqrt[2]*AppellF1[1/2 + m, 1/2, 2, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))]*Cos[e + f
*x]*(a + a*Sin[e + f*x])^m)/((c - d)^2*f*(1 + 2*m)*Sqrt[1 - Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.125784, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2788, 137, 136} \[ \frac{\sqrt{2} \cos (e+f x) (a \sin (e+f x)+a)^m F_1\left (m+\frac{1}{2};\frac{1}{2},2;m+\frac{3}{2};\frac{1}{2} (\sin (e+f x)+1),-\frac{d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) (c-d)^2 \sqrt{1-\sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^m/(c + d*Sin[e + f*x])^2,x]

[Out]

(Sqrt[2]*AppellF1[1/2 + m, 1/2, 2, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))]*Cos[e + f
*x]*(a + a*Sin[e + f*x])^m)/((c - d)^2*f*(1 + 2*m)*Sqrt[1 - Sin[e + f*x]])

Rule 2788

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dis
t[(a^2*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
+ d*x)^n)/Sqrt[a - b*x], x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !IntegerQ[m]

Rule 137

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*((b*c)/(b*c
- a*d) + (b*d*x)/(b*c - a*d))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&
 !IntegerQ[n] && IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x]

Rule 136

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*e - a*
f)^p*(a + b*x)^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f
))])/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^m}{(c+d \sin (e+f x))^2} \, dx &=\frac{\left (a^2 \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(a+a x)^{-\frac{1}{2}+m}}{\sqrt{a-a x} (c+d x)^2} \, dx,x,\sin (e+f x)\right )}{f \sqrt{a-a \sin (e+f x)} \sqrt{a+a \sin (e+f x)}}\\ &=\frac{\left (a^2 \cos (e+f x) \sqrt{\frac{a-a \sin (e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{(a+a x)^{-\frac{1}{2}+m}}{\sqrt{\frac{1}{2}-\frac{x}{2}} (c+d x)^2} \, dx,x,\sin (e+f x)\right )}{\sqrt{2} f (a-a \sin (e+f x)) \sqrt{a+a \sin (e+f x)}}\\ &=\frac{\sqrt{2} F_1\left (\frac{1}{2}+m;\frac{1}{2},2;\frac{3}{2}+m;\frac{1}{2} (1+\sin (e+f x)),-\frac{d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (a+a \sin (e+f x))^m}{(c-d)^2 f (1+2 m) \sqrt{1-\sin (e+f x)}}\\ \end{align*}

Mathematica [B]  time = 1.30564, size = 363, normalized size = 3.63 \[ -\frac{6 (c+d) \cot \left (\frac{1}{4} (2 e+2 f x+\pi )\right ) \sin ^2\left (\frac{1}{4} (2 e+2 f x+\pi )\right )^{\frac{1}{2}-m} \cos ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right )^{m-\frac{1}{2}} (a (\sin (e+f x)+1))^m F_1\left (\frac{1}{2};\frac{1}{2}-m,2;\frac{3}{2};\cos ^2\left (\frac{1}{4} (2 e+2 f x+\pi )\right ),\frac{2 d \sin ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right )}{c+d}\right )}{f (c+d \sin (e+f x))^2 \left (\sin ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right ) \left (8 d F_1\left (\frac{3}{2};\frac{1}{2}-m,3;\frac{5}{2};\cos ^2\left (\frac{1}{4} (2 e+2 f x+\pi )\right ),\frac{2 d \sin ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right )}{c+d}\right )-(2 m-1) (c+d) F_1\left (\frac{3}{2};\frac{3}{2}-m,2;\frac{5}{2};\cos ^2\left (\frac{1}{4} (2 e+2 f x+\pi )\right ),\frac{2 d \sin ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right )}{c+d}\right )\right )+3 (c+d) F_1\left (\frac{1}{2};\frac{1}{2}-m,2;\frac{3}{2};\cos ^2\left (\frac{1}{4} (2 e+2 f x+\pi )\right ),\frac{2 d \sin ^2\left (\frac{1}{4} (2 e+2 f x-\pi )\right )}{c+d}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])^m/(c + d*Sin[e + f*x])^2,x]

[Out]

(-6*(c + d)*AppellF1[1/2, 1/2 - m, 2, 3/2, Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c +
 d)]*(Cos[(2*e - Pi + 2*f*x)/4]^2)^(-1/2 + m)*Cot[(2*e + Pi + 2*f*x)/4]*(a*(1 + Sin[e + f*x]))^m*(Sin[(2*e + P
i + 2*f*x)/4]^2)^(1/2 - m))/(f*(c + d*Sin[e + f*x])^2*(3*(c + d)*AppellF1[1/2, 1/2 - m, 2, 3/2, Cos[(2*e + Pi
+ 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] + (8*d*AppellF1[3/2, 1/2 - m, 3, 5/2, Cos[(2*e + Pi
+ 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] - (c + d)*(-1 + 2*m)*AppellF1[3/2, 3/2 - m, 2, 5/2,
Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)])*Sin[(2*e - Pi + 2*f*x)/4]^2))

________________________________________________________________________________________

Maple [F]  time = 0.744, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+a\sin \left ( fx+e \right ) \right ) ^{m}}{ \left ( c+d\sin \left ( fx+e \right ) \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^2,x)

[Out]

int((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (d \sin \left (f x + e\right ) + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m/(d*sin(f*x + e) + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \sin \left (f x + e\right ) - c^{2} - d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^m/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m/(c+d*sin(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (d \sin \left (f x + e\right ) + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m/(d*sin(f*x + e) + c)^2, x)